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IX) COMPLÉMENTS SUR L’INTÉGRATION.
Dans tout ce chapitre f désigne une fonction de R dans R.

IX.1) FONCTIONS AYANT UNE PROPRIÉTÉ ”PAR MORCEAUX”.
1) Définitions.

Dans ce paragraphe, a et b sont deux réels vérifiant a < b.
DEF : on appelle subdivision d’ordre n ∈ N∗ de l’intervalle [a, b] toute liste σ = (x0, ..., xn) de n + 1 réels vérifiant :

x0 = a < x1 < ... < xn−1 < xn = b

Les xk sont appelés les points de la subdivision, les intervalles [xk−1, xk], k = 1..n, les intervalles fermés de la subdivision,
et les intervalles ]xk−1, xk[ les intervalles ouverts ; le réel

n
max
k=1

(xk − xk−1) s’appelle le pas (ou le module) de la subdivision.

La subdivision est dite régulière si les nombres xk − xk−1 sont égaux entre eux (donc égaux à
b− a

n
).

REM : la subdivision est régulière ssi xk = ............ ; ce qui donne en particulier, lorsque a = 0 et b = 1 : xk = ........

DEF : soit P une propriété concernant des fonctions sur un intervalle ; on dira que la fonction f possède la propriété
P par morceaux (ou par intervalles) sur [a, b] s’il existe une subdivision σ = (x0, ..., xn) de [a, b] telle que les n restrictions
de f aux intervalles ouverts ]xk−1, xk[ de la subdivision σ sont prolongeables en des fonctions ayant la propriété P sur les
intervalles fermés [xk−1, xk].

Une subdivision ayant cette propriété sera dite adaptée à la fonction f sur [a, b] pour la propriété P.

2) Exemples classiques.
a) Fonction continue par morceaux.

CNS : f est continue par morceaux sur [a, b] ss’il existe une subdivision σ = (x0, ..., xn) de [a, b] telle que
α) les n restrictions de f aux intervalles ouverts ]xk−1, xk[ sont continues
β) f possède une limite finie stricte à droite en x0, ..., xn−1 et une limite finie stricte à gauche en x1..., xn.

Si l’on définit un point de discontinuité de première espèce d’une fonction comme étant un point de discontinuité où la
fonction possède cependant une limite stricte finie à gauche et à droite, cette CNS peut s’écrire :

CNS : f est continue par morceaux sur [a, b] ssi la restriction de f à [a, b] est continue en tout point de [a, b] sauf en un
nombre fini de points où la discontinuité de la fonction est de première espèce.

E1

PROP (application du théorème de Weierstrass) :
Une fonction continue par morceaux sur un segment est bornée sur ce segment.
D1

Notation : l’ensemble des fonctions réelles d’ensemble de définition [a, b] continues par morceaux sur [a, b] est noté
CM ([a, b],R) .

PROP (admise) : CM ([a, b],R) est un sous-espace vectoriel et un sous-anneau de R[a,b].

b) Fonctions constantes par morceaux.

Elles sont plus communément appelées : fonctions en escalier.
CNS : f est en escalier sur [a, b] ss’il existe une subdivision σ = (x0, ..., xn) de [a, b] et n réels λ1, ..., λn tels que

∀k ∈ [|1, n|] ∀x ∈ ]xk−1, xk[ f (x) = λk

D2

Notation : l’ensemble des fonctions réelles d’ensemble de définition [a, b] en escalier sur [a, b] est noté Esc ([a, b],R) .

PROP (admise) : Esc ([a, b],R) est un sous-espace vectoriel et un sous-anneau de CM ([a, b],R) .
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c) Fonctions affines par morceaux.

CNS : f est affine par morceaux sur [a, b] ss’il existe une subdivision σ = (x0, ..., xn) de [a, b] et 2n réels a1, ..., an,b1, ..., bn
tels que

∀k ∈ [1, n] ∀x ∈ ]xk−1, xk[ f (x) = akx + bk

D3

E2

Notation : l’ensemble des fonctions réelles d’ensemble de définition [a, b] affines par morceaux sur [a, b] est notéAM ([a, b],R) .
PROP (admise) : AM ([a, b],R) est un sous-espace vectoriel de CM ([a, b],R) (mais pas un sous-anneau).

d) Fonctions de classe Ck par morceaux.

Notation : l’ensemble des fonctions réelles d’ensemble de définition [a, b] de classe Ck par morceaux sur [a, b] est noté
CkM ([a, b],R) .

PROP (admise) : CkM ([a, b],R) est une sous-algèbre de CM ([a, b],R) .
E3

IX.2) INTÉGRABILITÉ D’UNE FONCTION BORNÉE SUR UN SEGMENT.
1) Intégrale d’une fonction en escalier.

PROP et DEF : soit f une fonction en escalier sur [a, b] , σ = (x0, ..., xn) une subdivision adaptée à f, et λk la valeur
constante de f sur ]xk−1, xk[ ; alors le réel

n�

k=1

λk (xk − xk−1)

est indépendant du choix de la subdivision adaptée.
On l’appelle : intégrale de f sur [a, b] :

I (f) =

� b

a

f =
n�

k=1

f (ck) (xk − xk−1) avec ck ∈ ]xk−1, xk[

REM :

� b
a
f

b− a
est le barycentre des λk affectés des coefficients xk − xk−1 ; il représente donc la valeur moyenne de la

fonction f sur [a, b].

PROP : si f et g sont en escalier sur [a, b],

∀x ∈ [a, b] f (x) � g (x) ⇒ I (f) � I (g)

2) Intégrales inférieure et supérieure d’une fonction bornée sur un segment.

DEF : supposant f bornée sur [a, b] , on désigne par intégrale inférieure de f sur [a, b] la borne supérieure des intégrales
des fonctions en escalier minorant f sur [a, b], et par intégrale supérieure de f sur [a, b] la ............................................
................................................ :

I− (f) = sup



g en escalier sur [a, b]
∀x ∈ [a, b] g (x) � f (x)

I (g)

I+ (f) = inf



h en escalier sur [a, b]
∀x ∈ [a, b] f (x) � h (x)

I (h)

PROP : si ∀x ∈ [a, b] m � f (x) �M alors

m (b− a) � I− (f) � I+ (f) �M (b− a)
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DEF : f est dite intégrable (au sens de Riemann) sur [a, b] dès que son intégrale inférieure sur [a, b] est égale à son
intégrale supérieure :

f est intégrable sur [a, b] ⇔ I− (f) = I+ (f)

la valeur commune des intégrales inférieure et supérieure de f sur [a, b] est appelée intégrale de f sur [a, b] et notée
I (f) =

� b
a f =

� b
a f (x) dx (x étant ici une variable muette).

REM : lorsque f est en escalier, cette définition redonne bien celle donnée précédemment.

Exemple de fonction non intégrable au sens de Riemann sur [a, b] : E4.

CNS : f est intégrable sur [a, b] ss’il existe une suite (gn) de fonctions en escalier minorant f sur [a, b] et une suite (hn)

de fonctions en escalier majorant f sur [a, b] telle que lim
n→+∞

�� b
a
hn −

� b
a
gn
�

= 0 ; on a alors

� b

a

f = lim
n→+∞

� b

a

gn = lim
n→+∞

� b

a

hn

D4 (réciproque seulement).
APPLICATION : toute fonction monotone sur [a, b] est intégrable sur [a, b].
D5

E5 : calcul de
� a
0
xdx.

TH : toute fonction continue par morceaux sur [a, b] est intégrable sur [a, b].

Démonstration détaillée :

Donnée : f continue sur [a, b] , a � b, à valeurs réelles.

D’après le théorème de ................, f est uniformément continue sur [a, b].

Choisissons ε =
1

n
, n entier naturel non nul ; la continuité uniforme implique qu’il existe αn > 0 tel que pour x, y dans

[a, b],
|x− y| � .......⇒ |f (x)− f (y) | � ..........

Considérons une subdivision σn = (x0, ..., xpn) de pas inférieur ou égal à αn et construisons deux fonctions gn et hn en
escalier, la première minorant f, la deuxième majorant f de la façon suivante :

Sur ]xk−1, xk[ gn (x) = min
[xk−1,xk]

f = f (ck) (ce minimum existe d’après le théorème de ..............................) ; les valeurs de

gn aux xk n’ont aucune importance.
De même, sur ]xk−1, xk[ hn (x) = max

[xk−1,xk]
f = f (dk)(remarque similaires).

Alors |I(hn)− I(gn)| =

�����

pn�

k=1

(xk − xk−1) (f (dk)− f (ck))

�����
�

pn�

k=1

(xk − xk−1) |f (dk)− f (ck)| � 1

n

pn�

k=1

(xk − xk−1) =

............

n

(On a pu majorer |f (dk)− f (ck)| par 1

n
car ..........................................................................................)

Par conséquent, |I(hn)− I(gn)| tend vers 0 quand n tend vers l’infini, et f est intégrable au sens de Riemann.

L’intégrabilité au sens de Riemann d’une fonction continue par morceaux s’en déduit facilement.

IX.3) PROPRIÉTÉS DE L’INTÉGRALE D’UNE FONCTION CONTINUE PAR MORCEAUX SUR UN SEGMENT

P1 : si f est CM sur [a, b], l’intégrale
� b
a
f n’est pas modifiée si l’on modifie la valeur de f en un nombre fini de points

de [a, b].
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P2 : si f est définie sur [a, b] sauf en un nombre fini de points, mais qu’elle est prolongeable en une fonction CM sur [a, b],
alors l’intégrale de ce prolongement ne dépend pas de ce prolongement ; on dira par définition que c’est l’intégrale de f sur
[a, b].

E5 :
� π
0

sinx

x
dx a un sens,

� π
0 tanxdx n’en a pas.

Conventions : soient a et b deux réels quelconques ;
- si a = b,

� b
a
f = 0 dans tous les cas.

- si f est CM sur [a, b] , on pose :
�
[a,b] f =

�max(a,b)
min(a,b) f

si a > b,
� b
a
f = −

� a
b
f

E6 :
�
[x2−x,x2+x] f (t) dt =

P3 (Relation de Chasles) :
Si a, b, c sont trois réels quelconques et f CM sur [min(a, b, c),max (a, b, c)], alors,

� c

a

f =

� b

a

f +

� c

b

f

D6

P4 (linéarité de l’intégrale) :

si (H) :
�

f, g sont CM sur [a, b]
λ, µ ∈ R alors (C) :

� b

a

(λf + µg) = λ

� b

a

f + µ

� b

a

g

P5 (positivité de l’intégrale) :

si (H) :
�

f est CM sur [a, b]
f (x) � 0 pour x ∈ [a, b], sauf pour un nombre fini de x

alors (C) :






� b

a

f � 0 si a � b
�

[a,b]

f � 0 dans tous les cas

D7
P6 (croissance de l’intégrale, coro de P4 et P5) :

si (H) :
�

f est CM sur [a, b]
f (x) � g(x) pour x ∈ [a, b], sauf pour un nombre fini de x

alors (C) :






� b

a

f �

� b

a

g si a � b
�

[a,b]

f �

�

[a,b]

g dans tous les cas

D8
P7 (positivité stricte de l’intégrale, pour une fonction continue) :

si (H) :






f est continue sur [a, b] , a 
= b
f (x) � 0 pour x ∈ [a, b]
f (x0) > 0 pour au moins un x0 ∈ [a, b]

alors (C) :






� b

a

f > 0 si a < b
�

[a,b]

f > 0 dans tous les cas

D9

CORO (contraposée de P7)

si (H) :






f est continue sur [a, b] , a 
= b
f (x) � 0 pour tout x ∈ [a, b] ou f (x) � 0 pour tout x ∈ [a, b]� b
a
f = 0

alors (C) : f (x) = 0 pour tout x ∈ [a, b]
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D10
P8 (croissance stricte de l’intégrale pour des fonctions continues, coro de P4 et P7) :

si (H) :






f, g sont continues sur [a, b] , a 
= b
f (x) � g(x) pour x ∈ [a, b]
f (x0) < g (x0) pour au moins un x0 ∈ [a, b]

alors (C) :






� b

a

f <

� b

a

g si a < b
�

[a,b]

f <

�

[a,b]

g dans tous les cas

D11

CORO (contraposée de P8)

si (H) :






f et g sont continues sur [a, b]
f (x) � g (x) pour tout x ∈ [a, b]� b
a
f =

� b
a
g

alors (C) : f (x) = g (x) pour tout x ∈ [a, b]

D12

P9 (Inégalité triangulaire pour les intégrales)

si (H) : f est CM sur [a, b] alors (C) :

�����

� b

a

f

�����
�

�

[a,b]

|f |

D13

Exemple d’application : montrer que si un =
� 1
0
xn sin (10x) dx, limun = 0.

P10 (Inégalités de la moyenne)
Version encadrements :

si (H) :
�

f est CM sur [a, b]
a � b

alors (C) : (b− a) min
[a,b]

f �

� b

a

f � (b− a) max
[a,b]

f

Version valeur absolue :

si (H) : f est CM sur [a, b] alors (C) :

�����

� b

a

f

�����
� |b− a|max

[a,b]
|f |

D14

Explication de l’appellation ”inégalités de la moyenne” :

DEF : la valeur moyenne d’une fonction f CM sur [a, b] est le nombre

M[a,b] (f) =

� b
a
f

b− a
si a 
= b, M[a,b] (f) = f (a) si a = b

Remarquons que :
� b

a

f (x) dx =

� b

a

M[a,b] (f) dx

Les inégalités de la moyennes s’énoncent alors :
pour la version encadrement :

si (H) : f est CM sur [a, b] alors (C) : min
[a,b]

f �M[a,b] (f) � max
[a,b]

f

5
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pour la version valeur absolue :

si (H) : f est CM sur [a, b] alors (C) :
��M[a,b] (f)

�� � max
[a,b]

|f |

P11 (inégalité de la moyenne pondérée) :

si (H) : f et g sont CM sur [a, b] alors (C) :

�����

� b

a

fg

�����
� max

[a,b]
|f |
�

[a,b]

|g|

D15
REM 1 : si on fait g = 1 dans P11, on retrouve l’inégalité de la moyenne tout court, et si on fait f = 1, on retrouve

l’inégalité triangulaire.

REM 2 : la moyenne d’une fonction f CM sur [a, b] pondérée par une fonction g CM sur [a, b] d’intégrale non nulle sur
[a, b] est le réel :

M[a,b],g (f) =

� b
a fg
� b
a
g

L’inégalité de la moyenne pondérée s’écrit donc, si g est positive sur [a, b]

��M[a,b],g (f)
�� � max

[a,b]
|f |

IX.4) INTÉGRALE FONCTION DE SA BORNE SUPÉRIEURE. PRIMITIVES.

a) Propriétés de l’intégrale fonction de sa borne supérieure.
DEF : soit I un intervalle de R ; on dit que f est continue par morceaux sur I si elle est continue par morceaux sur tout

segment inclus dans I.

Exemples : la fonction partie entière est continue par morceaux sur R, la fonction x �→
�

1

x



est continue par morceaux

sur R∗+, mais pas sur R+.

Considérons une fonction f continue par morceaux sur l’intervalle I ; étant donné un point a de I, on définit la fonction
F sur I par

F (x) =

x�

a

f

Remarquons que F ne dépend de a qu’à une constante près ; en effet, si b ∈ I et G (x) =

� x

b

f, G (x)−F (x) =

� a

b

f = cte.

TH 1 : la fonction F est continue sur I (même si f est discontinue).

D16
REM : On dit que l’intégration a une fonction de régularisation.
E7

TH 2 : la fonction F est dérivable à droite et à gauche en tout point x0 de I (si x0 est l’une des bornes de I, il n’y a
qu’une seule de ces deux dérivabilités), et

F ′g (x0) = lim
x
<
→x0

f (x)

F ′d (x0) = lim
x
>
→x0

f (x)

D17
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COROLLAIRE 1 (théorème fondamental de l’intégration) : si la fonction f est continue en x0 ∈
◦

I, la fonction F est de
classe C1 en x0 et F ′ (x0) = f (x0) .

D18

COROLLAIRE 2 : si la fonction f est continue sur I, la fonction F est de classe C1 sur I ; plus généralement, si la
fonction f est de classe Cp sur I, la fonction F est de classe Cp+1 sur I.

b) Application à l’existence de primitives et au calcul des intégrales.

DEF : une fonction F est appelée une primitive de f sur l’intervalle I si F est dérivable sur I et si ∀x ∈ I F ′ (x) = f (x) .

REM : on a vu dans le cours sur les applications du théorème des accroissements finis que deux primitives d’une même
fonction SUR UN INTERVALLE diffèrent d’une constante sur cet intervalle.

TH 3 (corollaire du TH 2) : toute fonction continue sur un intervalle possède une primitive sur cet intervalle.
D19

REM : ce théorème est ”existentiel” mais non constructif. Il ne dit pas comment obtenir une primitive à l’aide des
fonctions usuelles. On démontre d’ailleurs qu’il existe des fonctions s’exprimant algébriquement à l’aide de fonctions usuelles
dont les primitives ne peuvent s’exprimer à l’aide des fonctions usuelles.

Exemples :
sinx

x
,
ex

x
, ex

2

etc...

Mais on sait maintenant par contre que x �→
� x

0

et
2

dt est une primitive de x �→ ex
2

.

ATTENTION : PAR CONTRE SI f est continue par morceaux sur un intervalle I SANS ETRE CONTINUE, ELLE NE
POSSEDE PAS DE PRIMITIVE sur I ; la fonction F définie dans 1) n’est pas dérivable sur I tout entier.

TH 3 bis (corollaire du TH précédent et de la remarque qui le précède) : toute fonction continue sur un intervalle possède
une UNIQUE primitive Fx0,y0 sur cet intervalle prenant une valeur donnée y0 en un point donné x0 de I ; elle est définie par

Fx0,y0(x) = .................................

D20

TH 4 (expression de l’intégrale d’une fonction continue sur un segment à l’aide de l’une de ses primitives) :
si f est continue sur [a, b] et si F est une primitive quelconque de f sur [a, b], alors

b�

a

f (x) dx = F (b)− F (a), que l’on note [F (x)]
b
a

D21
E8

c) Intégration par parties.

Rien de nouveau par rapport au cours de niveau 1.
d) Changement de variable.

La seule extension est le fait qu’on peut l’appliquer même si la fonction est continue par morceaux.

PROP : si u est une fonction de classe C1 sur un intervalle [a, b] et si f est une fonction continue par morceaux sur
J = u ([a, b]) , alors :

b�

a

f (u (x))u′ (x) dx =

u(b)�

u(a)

f (x) dx

7
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IX.5) FORMULE DE TAYLOR AVEC RESTE INTEGRAL.

a) Formule de Taylor avec reste intégral et inégalité de Taylor-Lagrange.
TH (formule de Taylor avec reste intégral) :
soit f une fonction de classe Cn+1 sur [a, b], T(n,f,a) le polynôme de Taylor de f en a ; alors :

f (b) = T(n,f,a) (b) +
1

n!

b�

a

(b− x)n f (n+1) (x) dx

� �� �
reste intégral

=
n�

k=0

(b− a)
k

k!
f (k) (a) +

b�

a

(b− x)
n

n!
f (n+1) (x) dx

D22 : poser Ik =

� b

a

(b− x)k

k!
f (k+1) (x) dx , vérifier par une intégration par parties que

Ik = −(b− a)
k

k!
f (k) (a) + Ik−1

et itérer cette relation de récurrence en partant de In.

APPLICATION : inégalité de Taylor-Lagrange :
soit f une fonction de classe Cn+1 sur [a, b], T(n,f,a) le polynôme de Taylor de f en a ; alors :

��f (b)− T(n,f,a) (b)
�� �

|b− a|n+1
(n + 1)!

max
[a,b]

���f(n+1)
���

D23
REM : pour n = 0, cette inégalité n’est autre que celle des accroissements finis.

b) Application au développement en série de Taylor de fonctions usuelles.

Par convention,
∞�

k=k0

uk désigne la limite quand n tend vers +∞ de
n�

k=k0

uk.

TH 1 pour tout réel x :

ex =
∞�

k=0

xk

k!
, ch x =

∞�

k=0

x2k

(2k)!
, sh x =

∞�

k=0

x2k+1

(2k + 1)!

cosx =
∞�

k=0

(−1)k
x2k

(2k)!
, sinx =

∞�

k=0

(−1)k
x2k+1

(2k + 1)!

D24

TH 2 : pour tout réel x ∈ [−1/2, 1]

ln (1 + x) =
∞�

k=1

(−1)k+1
xk

k

D25
REM 1 : pour x = 1, on obtient l’égalité remarquable

1− 1

2
+

1

3
− ..... = ln 2

REM 2 : on démontre que l’égalité du TH 2 est valable pour x ∈] − 1, 1] (et même aussi pour x = −1, si l’on dit que
ln (0) = −∞...)

IX.6 ) SOMMES DE RIEMANN.

8
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DEF : soit f une fonction réelle définie sur un intervalle [a, b], a < b, et σ = (x1, ...., xn) une subdivision de cet intervalle ;
dans chaque intervalle [xk−1, xk] de la subdivision, on se donne un élément ck ; par définition, la somme de Riemann associée
à la fonction f , à la subdivision σ et à (ck)k=1..n est le réel :

S(f,σ,(ck)) =
n�

k=1

f (ck) (xk − xk−1)

REM : si la subdivision σ est régulière, S(f,σ,(ck)) =
b− a

n

n�

k=1

f (ck) ; en particulier, si a = 0, b = 1 et ck = xk, on a :

S(f,σ,(xk)) =
1

n

n�

k=1

f

�
k

n

�

formule à savoir sans hésiter.

TH des sommes de Riemann : en raccourci, si f est continue sur [a, b], les sommes de Riemann ”convergent” vers l’intégrale
de la fonction f sur [a, b] lorsque le pas de la subdivision tend vers 0, ce qui signifie très précisément que :

∀ε > 0 ∃α > 0 ∀σ,∀ (ck) pas (σ) � α⇒

������

b�

a

f − S(f,σ,(ck))

������
� ε

Démonstration détaillée :

Donnée : f continue sur [a, b] , a < b, à valeurs réelles.

D’après le théorème de Heine, f est uniformément continue sur [a, b].
Soit ε > 0 ; la continuité uniforme implique qu’il existe α > 0 tel que pour x, y dans [a, b],

|x− y| � α⇒ |f (x)− f (y) | � ε

b− a

Considérons une subdivision σ = (x0, ..., xn) de pas inférieur ou égal à α et une suite (ck) associée ;

Alors

�����

� b

a

f − S(f,σ,(ck))

�����
=

�����

� b

a

f (x) dx−
n�

k=1

f (ck) (xk − xk−1)

�����
=

�����

n�

k=1

� xk

xk−1

(f (x)− f (ck)) dx

�����

�

n�

k=1

� xk

xk−1

|f (x)− f (ck)| dx �
n�

k=1

� xk

xk−1

ε

b− a
dx =

ε

b− a

n�

k=1

(xx − xk−1) = ε, CQFD

On en déduit, en prenant une subdivision régulière et des xk égaux à la borne de droite de leur intervalle, le

COROLLAIRE : si f est continue sur [a, b], la suite (Sn) définie par

Sn =
b− a

n

n�

k=1

f

�
a + k

b− a

n

�

converge vers
� b

a

f.

D26

REM : on en déduit que si f est CM sur [a, b] d’intégrale non nulle,
n�

k=1

f

�
a + k

b− a

n

�
∼

n→+∞
n.M[a,b] (f) , et en

particulier, pour a = 0 et b = 1 :
n�

k=1

f

�
k

n

�
∼

n→+∞
n.M[0,1] (f) = n

1�

0

f

9
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E12

un =
n�

k=1

1

n + k
→ ln 2, vn =

n�

k=1

1

(n + k)2
∼ 1

2n
, wn =

n�

k=1

sin
kπ

n
∼ 2n

π
, xn =

n�

k=1

e−
n
k

k2
∼ 1

en
.

IX.7) CALCULS APPROCHÉS D’UNE INTÉGRALE (hors programme).

Données : f : [a, b] −→ R continue, (x0, x1, ..., xn−1, xn) subdivision régulière de [a, b],

I =

� b

a

f =
n�

k=1

� xk

xk−1

f .

a) Méthode des rectangles (gauche ou droite).

On remplace
� xk

xk−1

f par (xk − xk−1)f(xk−1) ou par (xk − xk−1)f(xk).

On obtient pour chacun des cas les formules approchées :

Ir1 =
b− a

n

n−1�

k=0

f(a + k
b− a

n
) et Ir2 =

b− a

n

n�

k=1

f(a + k
b− a

n
)

.
Les formules sont exactes pour f constante.

REM : Ir2 − Ir1 =
b− a

n
(f (b)− f (a))

PROP : Majoration de l’erreur, si f est C1 sur [a, b] et M1 = max
[a,b]

|f ′|

|I − Ir1 | �M1
(b− a)2

2n
(idem pour |I − Ir2 | ).

De plus, cette inégalité est une égalité quand f est affine.

D33 : à l’aide de l’inégalité de Taylor-Lagrange, on montre d’abord que si f est C1 sur [α, β] :
�����

� β

α

f(x)dx− (β − α)f(α)

�����
�

(β − α)2

2
max
[α,β]

|f ′|

puis on applique ceci aux cas α = xk−1, β = xk.
b) Méthode des rectangles centrés.

On remplace
� xk

xk−1

f par (xk − xk−1)f

�
xk + xk−1

2

�
; on obtient la formule approchée

Irc =
b− a

n

n�

k=1

f

�
a + (2k − 1)

b− a

2n

�

La formule est exacte pour f affine.

PROP : Majoration de l’erreur, si f est C1 et M1 = max
[a,b]

|f ′|

|I − Irc| �M1
(b− a)2

4n

D35 : en utilisant 2 fois l’inégalité de Taylor-Lagrange, on montre que

�����

� β

α

f − (β − α) f

�
α + β

2

������
�

������

� α+β
2

α

f − β − α

2
f

�
α + β

2

�
������
+

�����

� β

α+β
2

f − β − α

2
f

�
α + β

2

������

�
(β − α)2

8
max�
α,
α+β
2

� |f ′|+
(β − α)2

8
max�
α+β
2 ,β

� |f ′| �
(β − α)2

4
max
[α,β]

|f ′|

10
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puis on applique ceci aux cas α = xk−1, β = xk.

c) Méthode des trapèzes.

On remplace
� xk

xk−1

f par (xk − xk−1)
f(xk−1) + f(xk)

2
; on obtient la formule approchée :

Itr =
b− a

n

�
f(a) + f(b)

2
+
n−1�

k=1

f

�
a + k

b− a

n

��

=
Ir1 + Ir2

2
= Ir1 +

b− a

2n
(f (b)− f (a)) = Ir2 −

b− a

2n
(f (b)− f (a))

La formule est exacte pour f affine.

PROP : Majoration de l’erreur, si f est C2 et M2 = max
[a,b]

|f ′′|

|I − Itr| �M2
(b− a)3

12n2

De plus, cette inégalité est une égalité quand f est du second degré.

D34 : on montre d’abord que si f est C2 sur [α, β] ,

� β

α

f(x)dx =
β − α

2
(f(α) + f (β))−

� β

α

�
x− α + β

2

�
f ′(x)dx

=
β − α

2
(f(α) + f(β))− 1

2

� β

α

(x− α)(x− β)f ′′(x)dx.

(Ecrire d’abord dx = d

�
x− α + β

2

�
, puis

�
x− α + β

2

�
dx = d

�
1

2
(x− α)(x− β)

�
)

On en déduit que
����
� β
α
f − β − α

2
(f(α) + f(β))

���� �
(β − α)3

12
max
[α,β]

|f ′′|

puis on applique ceci aux cas α = xk−1, β = xk.

REM : ceci montre que (I − Ir1) ∼ (Ir2 − I) ∼
n→+∞

f (b)− f (a)

2n
.

d) Méthode de Simpson.

On remplace
� xk

xk−1

f par (xk − xk−1)

f(xk−1) + 4f

�
xk−1 + xk

2

�
+ f(xk)

6
, ce qui donne la formule approchée :

Is =
b− a

6n

�
f(a) + f(b) + 2

n−1�

k=1

f

�
a + k

b− a

n

�
+ 4

n−1�

k=1

f

�
a + (2k + 1)

b− a

2n

��

La formule est exacte pour f polynomiale de degré inférieur ou égal à trois.

REM : Is =
1

3
(Itr + 2Irc)

PROP : Majoration de l’erreur, si f est C4 et M4 = max
[a,b]

��f (4)
��

|I − Is| �M4
(b− a)5

2880n4

De plus, cette majoration est une égalité quand f est du quatrième degré.

D36 : on montre d’abord que si f est C4 sur [α, β] ,

11
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�����

� β

α

f − β − α

6

�
f(α) + 4f

�
α + β

2

�
+ f(β)

������
�

(β − α)5

2880
max
[α,β]

��f (4)
��

puis on applique ceci aux cas α = xk−1, β = xk.

EXEMPLE : calcul de
� π/2

0

sinxdx ; les 5 méthodes : rectangles à droite, rectangles à gauche, trapèzes, rectangles

centrés, et Simpson donnent successivement, pour n = 10 :
1,076482803
0,9194031703
0,9979429867
1,001028824
1,000000212

IX.8 ) EXTENSION DES NOTIONS PRÉCÉDENTES AUX FONCTIONS DE R vers C.

f désigne une fonction de R vers C, g et h ses parties réelle et imaginaire (g(x) = Re (f (x)) , h(x) = Im (f (x))

a) Limites, continuité, équivalents, o, O.

Les définitions sont les mêmes, à condition de lire les valeurs absolues comme des modules (par contre les définitions avec
des encadrements ne sont plus valables ; par exemple, f est continue en x0 ssi

∀ε > 0 ∃α > 0 ∀x ∈ Df |x− x0| < α⇒ |f (x)− f (x0)| < ε

Il n’y a plus de notion de limite infinie (mais toujours des limites en ±∞) pour f, mais il y en a pour |f | , qui est une
fonction réelle ; par exemple, x �→ xeix n’a pas de limite en plus l’infini, mais

lim
x→+∞

��xeix
�� = +∞

PROP : il y a équivalence entre l’existence d’une limite l pour f avec celle d’une limite l1 pour g et d’une limite l2 pour
h, et l’on a l = l1 + il2; on en déduit l’équivalence entre la continuité de f et celle, simultanée, de g et h.

Les propriétés concernant les opérations restent inchangées.

b) Dérivation.

Définitions identiques ; par exemple,

f ′ (x) = lim
u→0

f (x + u)− f (x)

u

PROP : la dérivabilité de f équivaut à celle de ses parties réelle et imaginaire g et h ; et f ′ = g′ + ih′.

Exemple :
d

dx
eix = ieix = ei(x+

π

2 )

Les propriétés concernant les opérations restent inchangées ; mais par contre, le théorème de Rolle ne s’étend pas aux
fonctions complexes.

c) Intégration.

On ne peut plus définir l’intégrabilité à partir des fonctions en escalier minorantes et majorantes. La définition la plus
simple consiste à poser que l’intégrabilité de f équivaut à celle de ses parties réelle et imaginaire g et h ; et l’on pose

b�

a

f =

b�

a

g + i

b�

a

h

12
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Toutes les propriétés ne faisant pas intervenir d’encadrements restent valables.

IX. 9) COMPLÉMENTS : méthodes de calculs de primitives (hors programme).

a) Primitives des fractions rationnelles réelles.

On décompose en éléments simples dans R :

les termes en s’intègrent en

xk (k � 0)
x....

1

(x− x0)
k

(k � 2) − 1

..... (x− x0)
.......

1

x− x0
ln |x− x0|

ax + b

(x + c)2 + e2
=

a

2

2 (x + c)

(x + c)2 + e2
+

b− ac

(x + c)2 + e2
a

2
ln (............) + ..... arctan (....................)

(k � 2)
ax + b

�
(x + c)2 + e2

�k =

a

2

2 (x + c)
�

(x + c)2 + e2
�k +

b− ac
�

(x + c)2 + e2
�k

........�
(x + c)2 + e2

�..... + ∗

∗, terme s’intégrant en utilisant In (x) =

�
dx

(1 + x2)n

REM 1 : ceci démontre que toute fraction rationnelle possède une primitive ne faisant intervenir que ln, arctan, et des
fractions rationnelles.

Mais il faut tempérer cet enthousiasme par le fait que, le théorème de D’Alembert n’étant pas constructif, on ne sait

pas factoriser des polynômes de degré � 5 ; par exemple, le calcul de
� b

a

dx

x5 + x2 + 1
est subordonné à la factorisation de

X5 + X2 + 1, laquelle est inconnue....

b) Primitives des fonctions rationnelles en sinus et cosinus.

DEF : une fonction de deux variables est dite rationnelle si lorsqu’on fixe une variable (et quelles que soient les façons de
le faire), la fonction d’une variable obtenue est rationnelle.

Soit donc à déterminer
�

f (cosx, sinx) dx avec f rationnelle.

On dispose des règles dites de Bioche :

* Premier cas : si l’élément différentiel f (cosx, sinx) dx est invariant par le changement x→ π − x, poser u = sinx.
Explication : on a f (− cosx, sinx) = −f (cosx, sinx) , f est donc impaire par rapport à sa première variable et l’on

pourra alors toujours écrire f (cosx, sinx) = cosx.g
�
cos2 x, sinx

�
avec g rationnelle ; alors

�
f (cosx, sinx) dx =

�
g
�
cos2 x, sinx

�
cosx dx =

�
g
�
1− u2, u

�
du

et on tombe sur une fraction rationnelle en u, qui s’intègre.

* Deuxième cas : si l’élément différentiel f (cosx, sinx) dx est invariant par le changement x→−x, poser u = cosx.
Explication : on a f (cosx,− sinx) = −f (cosx, sinx) , f est donc impaire par rapport à sa deuxième variable et l’on

pourra alors toujours écrire f (cosx, sinx) = sinx.g
�
cosx, sin2 x

�
avec g rationnelle ; alors

�
f (cosx, sinx) dx =

�
g
�
cosx, sin2 x

�
sinx dx = −

�
g
�
u, 1− u2

�
du

13
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et on tombe sur une fraction rationnelle en u, qui s’intègre.

* Troisième cas : si l’élément différentiel f (cosx, sinx) dx est invariant par le changement x→ x + π, poser u = tanx.
Explication : on a f (− cosx,− sinx) = f (cosx, sinx) ,et l’on démontre que l’on pourra alors toujours écrire f (cosx, sinx) =

g (tanx) avec g rationnelle ; alors
�

f (cosx, sinx) dx =

�
g (tanx) dx =

�
g (u)

1 + u2
du

et on tombe sur une fraction rationnelle en u, qui s’intègre.

ATTENTION : la primitive obtenue ne sera valable que sur
�
−π

2
+ kπ,

π

2
+ kπ

�
; si

π

2
est dans l’intervalle d’intégration,

on peut aussi poser u = cotx, qui fonctionne de manière similaire.
* si aucun des cas précédent n’a fonctionné, poser u = tan

x

2
, changement fonctionnant dans tous les cas.

Explication : �
f (cosx, sinx) dx =

�
f

�
1− u2

1 + u2
,

2u

1 + u2

�
2du

1 + u2

et on tombe sur une fraction rationnelle en u, qui s’intègre.

ATTENTION : la primitive obtenue ne sera valable que sur ]−π + 2kπ, π + 2kπ[ ; si π est dans l’intervalle d’intégration,

on peut aussi poser u = cot
x

2
, qui fonctionne de manière similaire.

c) Primitives des fonctions rationnelles en l’exponentielle.

Soit à déterminer
�

f (ex) dx avec f rationnelle : poser u = ex.

Explication : �
f (ex) dx =

�
f (u)

du

u

et on tombe sur une fraction rationnelle en u, qui s’intègre.

REM : ce cas englobe celui des fonctions rationnelles en cosinus hyperbolique et en sinus hyperbolique.

d) Primitives des fonctions rationnelles en x et en n

�
ax + b

cx + d
.

Soit à déterminer
�

f

�

x, n

�
ax + b

cx + d

�

dx avec f rationnelle : poser u = n

�
ax + b

cx + d
.

Explication : un =
ax + b

cx + d
, donc x =

b− dun

cun − a
= g (u) avec g rationnelle, et donc

�
f

�

x, n

�
ax + b

cx + d

�

dx =

�
f (g (u) , u) g′ (u) du

et on tombe sur une fraction rationnelle en u, qui s’intègre.

e) Primitives des fonctions rationnelles en x et en
√
ax2 + bx + c.

Soit à déterminer
�

f
�
x,
√
ax2 + bx + c

�
dx avec f rationnelle, et ∆ = b2− 4ac 
= 0 (pourquoi le cas ∆ = 0 est-il évident

?)

Première étape : mettre ax2 + bx + c sous sa forme canonique
1

4a

�
(2ax + b)2 −∆

�
et poser u =

2ax + b
�
|∆|

; il y a alors 3

cas

14
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Premier cas : ∆ > 0 et a > 0 : on obtient
�

f
�
x,
√
ax2 + bx + c

�
dx =

�
g
�
u,
√
u2 − 1

�
du : poser alors v = argchεu (ε =

±1), d’où u = εch v et du = ε sh vdv, soit
�

g
�
u,
�

u2 − 1
�
du =

�
g (εch v, sh v) εsh vdv

et on, est ramené au III)

Deuxième cas : ∆ > 0 et a < 0 : on obtient
�

f
�
x,
√
ax2 + bx + c

�
dx =

�
g
�
u,
√

1− u2
�
du : poser alors v = arcsinu,

d’où u = sin v et du = cos v dv, soit
�

g
�
u,
�

1− u2
�
du =

�
g (sin v, cos v) cos vdv

et on, est ramené au II)

Troisième cas : ∆ < 0 et a > 0 : on obtient
�

f
�
x,
√
ax2 + bx + c

�
dx =

�
g
�
u,
√

1 + u2
�
du : poser alors v = arg sinhu,

d’où u =sh v et du =ch v dv, soit �
g
�
u,
�

1 + u2
�
du =

�
g (sh v, ch v) ch vdv

et on, est ramené au III)
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