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IX) COMPLEMENTS SUR L’INTEGRATION.
Dans tout ce chapitre f désigne une fonction de R dans R.

IX.1) FONCTIONS AYANT UNE PROPRIETE "PAR MORCEAUX”.
1) Définitions.

Dans ce paragraphe, a et b sont deux réels vérifiant a < b.
DEF : on appelle subdivision d’ordre n € N* de 'intervalle [a, b] toute liste o = (xo, ..., z,) de n + 1 réels vérifiant :

n=0<21<..<Tp_1<T,=0>

Les x, sont appelés les points de la subdivision, les intervalles [zx_1, zx], k = 1..n, les intervalles fermés de la subdivision,
et les intervalles |zg_1, x| les intervalles ouverts ; le réel rz?%f( (zx — xr—1) s’appelle le pas (ou le module) de la subdivision.

CL)'

La subdivision est dite réguliére si les nombres xp — x)_1 sont égaux entre eux (donc égaux a

REM : la subdivision est réguliére ssi zp = ............ ; ce qui donne en particulier, lorsque a =0et b=1: zp = ........

DEF : soit P une propriété concernant des fonctions sur un intervalle ; on dira que la fonction f posséde la propriété
P par morceauz (ou par intervalles) sur [a,b] il existe une subdivision o = (g, ..., z,,) de [a,b] telle que les n restrictions
de f aux intervalles ouverts |zj_1, x| de la subdivision o sont prolongeables en des fonctions ayant la propriété P sur les
intervalles fermés [xg_1, zx].

Une subdivision ayant cette propriété sera dite adaptée a la fonction f sur [a,b] pour la propriété P.

2) Exemples classiques.
a) Fonction continue par morceaux.

CNS : f est continue par morceauz sur [a,b] ss’il existe une subdivision o = (zy, ..., z,) de [a, b] telle que
«) les n restrictions de f aux intervalles ouverts |zg_1, zx[ sont continues
B) f posséde une limite finie stricte a droite en xq, ..., z,—1 et une limite finie stricte & gauche en ..., .

Si l'on définit un point de discontinuité de premiére espéce d’une fonction comme étant un point de discontinuité ou la
fonction posséde cependant une limite stricte finie & gauche et a droite, cette CNS peut s’écrire :

CNS : f est continue par morceaux sur [a, b] ssi la restriction de f & [a,b] est continue en tout point de [a, b] sauf en un
nombre fini de points ou la discontinuité de la fonction est de premiére espéce.
E1

PROP (application du théoréme de Weierstrass) :
Une fonction continue par morceaux sur un segment est bornée sur ce segment.
D1

Notation : 'ensemble des fonctions réelles d’ensemble de définition [a,b] continues par morceaux sur [a,b] est noté
CM ([a,b],R).
PROP (admise) : CM ([a,b], R) est un sous-espace vectoriel et un sous-anneau de R[],

b) Fonctions constantes par morceaux.

Elles sont plus communément appelées : fonctions en escalier.
CNS : f est en escalier sur [a, b] ss’il existe une subdivision o = (zg, ..., ,) de [a,b] et n réels Ay, ..., A, tels que

Vk € [|1,n]] Vo € Jzp—1, 2] f(x) =Nk
D2
Notation : I’ensemble des fonctions réelles d’ensemble de définition [a, b] en escalier sur [a, b] est noté Esc ([a, b, R).

PROP (admise) : Esc([a,b],R) est un sous-espace vectoriel et un sous-anneau de CM ([a, b],R) .
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¢) Fonctions affines par morceaux.

CNS : f est affine par morceaux sur [a, b] ss’il existe une subdivision o = (zo, ..., ) de [a,b] et 2n réels aq, ..., an,b1, ..., by
tels que
Vk € [1,n] Vo € lag_1,zi] f(x) = arx + by

D3
E2

Notation : I’ensemble des fonctions réelles d’ensemble de définition [a, b] affines par morceaux sur [a, b] est noté AM ([a,b],R) .
PROP (admise) : AM ([a,b],R) est un sous-espace vectoriel de CM ([a,b], R) (mais pas un sous-anneau).

d) Fonctions de classe C¥ par morceaux.

Notation : I’ensemble des fonctions réelles d’ensemble de définition [a,b] de classe C¥ par morceaux sur [a,b] est noté
C*M ([a,b],R).

PROP (admise) : C¥M ([a,b],R) est une sous-algébre de CM ([a, b], R).

E3

IX.2) INTEGRABILITE D’UNE FONCTION BORNEE SUR UN SEGMENT.
1) Intégrale d’une fonction en escalier.
PROP et DEF : soit f une fonction en escalier sur [a,b] , o0 = (zo, ..., ;) une subdivision adaptée a f, et A\ la valeur
constante de f sur |zi_1, 2] ; alors le réel

Z)\k (x)p — xp—1)
k=1

est indépendant du choix de la subdivision adaptée.
On P'appelle : intégrale de f sur [a,b] :

b n
I(f) = / f= Zf (ck) (zk — p—1) avec ¢ € |wp—1, T
@ k=1

b
REM : bf ¢ / est le barycentre des A\ affectés des coefficients x; — xp_1 ; il représente donc la valeur moyenne de la
a

fonction f sur [a, b].

PROP : si f et g sont en escalier sur [a, b],

Vz € [a,b] f(z)<g(z)=1(f)<I(g)

2) Intégrales inférieure et supérieure d’une fonction bornée sur un segment.

DEF : supposant f bornée sur [a,b] , on désigne par intégrale inférieure de f sur [a, b] la borne supérieure des intégrales
des fonctions en escalier minorant f sur [a,b], et par intégrale supérieure de f sur [a,b] 1a ..cccooeviniiiniiiininiiiinienns

I=(f) = sup 1(g)
{ g en escalier sur [a, b]

YV € [a,b] g(z) < f(z)

IT(f)= inf I(h)
h en escalier sur [a, D]
{ Va € [a,b] f(z) < h(z)

PROP :siVz € [a,b] m < f(z) < M alors

m(b—a) <I~(f) <IT(f)<M(b—a)
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DEF : f est dite intégrable (au sens de Riemann) sur [a,b] dés que son intégrale inférieure sur [a,b] est égale & son

intégrale supérieure :
f est intégrable sur [a,b] < I~ (f) =11 (f)

la valeur commune des intégrales inférieure et supérieure de f sur [a,b] est appelée intégrale de f sur [a,b] et notée
I1(f)= f(f f= fab f (z) dz (x étant ici une variable muette).

REM : lorsque f est en escalier, cette définition redonne bien celle donnée précédemment.
Exemple de fonction non intégrable au sens de Riemann sur [a,b] : E4.

CNS : f est intégrable sur [a,b] ss’il existe une suite (g,) de fonctions en escalier minorant f sur [a, b] et une suite (hy,)

de fonctions en escalier majorant f sur [a, b] telle que lirf ( / : hn — ff gn> =0; on a alors
n—-1+:0oo
b b b
f= lim gn = lim h
/a n—-+o00 a " n—-+o00 a "

D4 (réciproque seulement).
APPLICATION : toute fonction monotone sur [a, b] est intégrable sur [a, b].
D5

E5 : caleul de [ zdw.

TH : toute fonction continue par morceaux sur [a,b] est intégrable sur [a, b].
Démonstration détaillée :

Donnée : f continue sur [a,b] , a < b, & valeurs réelles.

D’aprés le théoreme de ................ , [ est uniformément continue sur [a, b].

1
Choisissons € = —, n entier naturel non nul ; la continuité uniforme implique qu’il existe «,, > 0 tel que pour z,y dans
[a, b],
|z —y[ <. = |f@) = fY) <

Considérons une subdivision o, = (o, ..., p,) de pas inférieur ou égal & o, et construisons deux fonctions g, et h, en
escalier, la premiére minorant f, la deuxiéme majorant f de la fagon suivante :

Sur |xg_1,xk] gn (z) = : min | f = f(cx) (ce minimum existe d’apres le théoréme de ......ccceevivieeienne. ) ; les valeurs de
Tr—1,Tk
gn aux xx n’ont aucune importance.
De méme, sur |zg_1, [ by () = : max f = f (dj)(remarque similaires).
Tk—1,Tk
Pn Pn 1 Pn
Alors [I(hn) = I(ga)| = |Y (= z-1) (f (d) = f ()| < Y (an —an-a) |f (i) = f(er)] < = (an —ap-1) =
------------ k:1 k:1 nk:l
" 1
(On a pu majorer |f (dy) — f (cx)| par 7y GBI cooemmmms s )

Par conséquent, |I(h,) — I(gn)| tend vers 0 quand n tend vers l'infini, et f est intégrable au sens de Riemann.
L’intégrabilité au sens de Riemann d’une fonction continue par morceaux s’en déduit facilement.

IX.3) PROPRIETES DE L’INTEGRALE D’UNE FONCTION CONTINUE PAR MORCEAUX SUR UN SEGMENT

P1: si f est CM sur [a,b], 'intégrale f(f f n’est pas modifiée si I’'on modifie la valeur de f en un nombre fini de points

de [a, b].
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P2 : si f est définie sur [a, ] sauf en un nombre fini de points, mais qu’elle est prolongeable en une fonction CM sur [a, b],
alors l'intégrale de ce prolongement ne dépend pas de ce prolongement ; on dira par définition que c’est 'intégrale de f sur

[a, b].

xsinx ﬂ'
E5: [, dz a un sens, [; tanzdz n'en a pas.
T
Conventions : soient a et b deux réels quelconques ;
. b
-sia="b, [] f =0 dans tous les cas.
a

- si f est CM sur [a, b] , on pose :

max(a,b)
f[u,b] f - fmin(a,b) f
sia>b, [Cf=—["f

E6 ¢ o ypeyq f () dt=

P3 (Relation de Chasles) :
Si a, b, ¢ sont trois réels quelconques et f CM sur [min(a, b, ¢), max (a, b, )], alors,

/:f/abf+/bcf
D6

P4 (linéarité de 'intégrale) :

b b b
si (H){ {’iSEOIIgCMSHr[a’b] alors | (C) :/ ()xf—l-ug):)\/ f—l—u/g

P5 (positivité de l'intégrale) :

b
/f>o sia<b

f est CM sur [a, b] (C) :
/‘ f = 0 dans tous les cas
[a,b]

f(z) > 0 pour z € [a,b], sauf pour un nombre fini de x alors

si (H):{

D7
P6 (croissance de l'intégrale, coro de P4 et P5) :

b b
sy { 4ot O s fr [ 1< [ o[iezy]

. 1 C):
f(x) < g(x) pour x € [a,b], sauf pour un nombre fini de x alors | (C) /q F< / g dans tous les cas
[a,b] [a,b]

D8
P7 (positivité stricte de 'intégrale, pour une fonction continue) :

b
[ est continue sur [a,b] ,a # b / >0
si|(H): ¢ f(z) >0 pour z € [a, ] alors | (C) :
f (zo) > 0 pour au moins un xq € [a, b / f > 0 dans tous les cas
[a,b]

D9

CORO (contraposée de P7)

f est continue sur [a,b] ,a #b
si| (H) : fb(x) > 0 pour tout x € [a,b] ou f (x) < 0 pour tout = € [a,b] | alors ‘ (C) : f (z) =0 pour tout z € [a, b] ‘
Jo f=0
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D10
P8 (croissance stricte de I'intégrale pour des fonctions continues, coro de P4 et P7) :

f(z) < g(x) pour x € [a, b] alors :
f (z0) < g(z0) pour au moins un zg € [a, ] /“ < / g dans tous les cas
[a,b] [a,b]

b b
f, g sont continues sur [a,b] ,a #b / f< / g
i|(H): (©) : “

D11

CORO (contraposée de P8)

si f(z) < g(z) pour tout = € [a, b] alors | (C): f(x) =g (z) pour tout = € [a,b) ‘

Lf=1g

f et g sont continues sur [a, D]
(H)

D12

P9 (Inégalité triangulaire pour les intégrales)

si|(H): fest CM sur [a,b] | alors |(C) :

D13

Exemple d’application : montrer que si u,, = fol 2™ sin (10z) dz, limu,, = 0.
P10 (Inégalités de la moyenne)
Version encadrements :

si

(H) : { (J:ESE) CM sur [a, 8 alors | (C): (b—a rnmf / f<(b-a rnaxf

Version valeur absolue :

si | (H) : f est CM sur [a, b] | alors | (C) :

[

< |b— al max
b~ | ma|f

)

D14
Explication de I'appellation ”inégalités de la moyenne”

DEF : la valeur moyenne d’une fonction f CM sur [a, ] est le nombre

5. f

b—a

/ flayds= [ Miwyy (f) do

Les inégalités de la moyennes s’énoncent alors :
pour la version encadrement :

M[a,b] (f) = sia 7é b7 M[a,b] (f) = f (a) sia=b

Remarquons que :

si ‘ (H) : f est CM sur [a, b] | alors | (C) : I[Illg]lf Mg (f) < I[n&}):j(f
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pour la version valeur absolue :

si| (H) : f est CM sur [a, b] ‘ alors | (C) : My (f)| < r[n&t)]<|f|

P11 (inégalité de la moyenne pondérée) :

Si| (H) : f et g sont CM sur [a, b] ‘ alors | (C) : < max |f| gl

[a,b] [a,b]

/abfg

D15
REM 1 : si on fait ¢ = 1 dans P11, on retrouve I'inégalité de la moyenne tout court, et si on fait f = 1, on retrouve
I'inégalité triangulaire.

REM 2 : la moyenne d’une fonction f CM sur [a,b] pondérée par une fonction ¢ CM sur [a, b] d’intégrale non nulle sur
[a, b] est le réel :

Ji fg
I

L’inégalité de la moyenne pondérée s’écrit donc, si g est positive sur [a, b]

M[a,b],g (f) =

| Map,6 (F)] < Iﬁé})ﬁdﬂ

IX.4) INTEGRALE FONCTION DE SA BORNE SUPERIEURE. PRIMITIVES.
a) Propriétés de l'intégrale fonction de sa borne supérieure.

DEF : soit I un intervalle de R ; on dit que f est continue par morceaux sur I si elle est continue par morceaux sur tout
segment inclus dans 1.

. . . . : 1 :
Exemples : la fonction partie entiére est continue par morceaux sur R, la fonction x +— {— est continue par morceaux
T

sur R% , mais pas sur R.

Considérons une fonction f continue par morceaux sur l'intervalle I ; étant donné un point a de I, on définit la fonction
F sur I par
T
Fa)= [ 1
a

xT a
Remarquons que F' ne dépend de a qu’a une constante prés ; en effet, sib € I et G (z) = / f,G(x)—F(x) = / f = cte.
b b

TH 1 : la fonction F' est continue sur I (méme si f est discontinue).

D16
REM : On dit que l'intégration a une fonction de régularisation.
E7

TH 2 : la fonction F' est dérivable a droite et & gauche en tout point zo de I (si zp est 'une des bornes de I, il n’y a
qu’une seule de ces deux dérivabilités), et

Fy o) = B /(@)
Fiao) = Tim [ (@)

D17
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COROLLAIRE 1 (théoréme fondamental de l'intégration) : si la fonction f est continue en xy € I, la fonction F' est de
classe C! en zg et F' (z0) = f (z0).
D18

COROLLAIRE 2 : si la fonction f est continue sur I, la fonction F' est de classe C! sur I ; plus généralement, si la
fonction f est de classe CP sur I, la fonction F est de classe CP*! sur I.

b) Application & l'existence de primitives et au calcul des intégrales.
DEF : une fonction F' est appelée une primitive de f sur intervalle I si F' est dérivable sur I et siVe € I F' () = f(x).

REM : on a vu dans le cours sur les applications du théoréme des accroissements finis que deux primitives d’une méme
fonction SUR UN INTERVALLE difféerent d’une constante sur cet intervalle.

TH 3 (corollaire du TH 2) : toute fonction continue sur un intervalle posséde une primitive sur cet intervalle.
D19

REM : ce théoréme est "existentiel” mais non constructif. IlI ne dit pas comment obtenir une primitive a I'aide des
fonctions usuelles. On démontre d’ailleurs qu’il existe des fonctions s’exprimant algébriquement a I’aide de fonctions usuelles
dont les primitives ne peuvent s’exprimer & l’aide des fonctions usuelles.

sinx e* -

Exemples : ——, —,e” etc...
x oz

x
. . . 2 s 22
Mais on sait maintenant par contre que  +— / et"dt est une primitive de = — e*".

0
ATTENTION : PAR CONTRE SI f est continue par morceaux sur un intervalle I SANS ETRE CONTINUE, ELLE NE
POSSEDE PAS DE PRIMITIVE sur I ; la fonction F' définie dans 1) n’est pas dérivable sur I tout entier.

TH 3 bis (corollaire du TH précédent et de la remarque qui le précede) : toute fonction continue sur un intervalle posséde

une UNIQUE primitive Fj, 4, sur cet intervalle prenant une valeur donnée yo en un point donné xg de I ; elle est définie par

D20

TH 4 (expression de I'intégrale d’une fonction continue sur un segment a l’aide de I'une de ses primitives) :
si f est continue sur [a,b] et si F' est une primitive quelconque de f sur [a, ], alors

/f (x)dx = F(b) — F(a), que Pon note [F (x)]z

D21
E8
c¢) Intégration par parties.

Rien de nouveau par rapport au cours de niveau 1.
d) Changement de variable.

La seule extension est le fait qu’on peut I’appliquer méme si la fonction est continue par morceaux.

PROP : si u est une fonction de classe C' sur un intervalle [a,b] et si f est une fonction continue par morceauz sur
J =wu/([a,b]), alors :

b u(b)
/ﬂwmw@Mwifﬂmw
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IX.5) FORMULE DE TAYLOR AVEC RESTE INTEGRAL.
a) Formule de Taylor avec reste intégral et inégalité de Taylor-Lagrange.
TH (formule de Taylor avec reste intégral) :

soit f une fonction de classe C"*! sur [a, b], Tin,f,a) le polynome de Taylor de f en a ; alors :

n

n
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b k b n
£ (6) = T py (b) + i' / (b—2)" F) (2) do = Z (b ;!a) F® (a) + / %f(nﬂ) (z) dz

k=0

reste intégral

x)k

b
h—
D22 : poser I, = / (Tf(k'“‘l) (x) dx , vérifier par une intégration par parties que
a !

h— k
=0 @) g

et itérer cette relation de récurrence en partant de I,.

APPLICATION : inégalité de Taylor-Lagrange :
soit f une fonction de classe C"*! sur [a, b], Tin,f,a) le polynome de Taylor de f en a ; alors :

|b _ a|7l+1

B 0—a (n+1)
| (6) = Tin, .0y (b)] < n+ 1) oy ‘ ‘
D23

REM : pour n = 0, cette inégalité n’est autre que celle des accroissements finis.

b) Application au développement en série de Taylor de fonctions usuelles.

o0 n
Par convention, Z uy désigne la limite quand n tend vers oo de Z U
k=ko k=ko
TH 1 pour tout réel z :

ixk i 12k io: p2k+1
et = —,chx = shx = P R———
1’ 1 !
= k! = (2k)! = (2k + 1)!
5o 2k 0 2k+1
- E T . - kT
cosx = Z(—l) o sinx = Z( 1) ohr 1
k=0 k=0
D24
TH 2 : pour tout réel z € [-1/2,1]
o0 k
In(1 _ IR Lan
n(lta) =3 ()2
k=1
D25
REM 1 : pour z = 1, on obtient ’égalité remarquable
1
l—=4+-=-—.... =1In2
573 "
REM 2 : on démontre que I'égalité du TH 2 est valable pour z €] — 1,1] (et méme aussi pour z = —1, si Pon dit que

In(0) = —o0...)

IX.6 ) SOMMES DE RIEMANN.
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DEF : soit f une fonction réelle définie sur un intervalle [a, b],a < b, et 0 = (21, ...., x,) une subdivision de cet intervalle ;
dans chaque intervalle [x;_1, 2] de la subdivision, on se donne un élément ¢, ; par définition, la somme de Riemann associée
a la fonction f, a la subdivision o et & (cx),_, ,, est le réel :

Sttoeny = D _F (e) (@h — x1)
k=1

b_ a n
Zf (ck) ; en particulier, sia =0,b=1et ¢y =z, on a :

k=1

l — k
Stpoeen =D f <ﬁ)
k=1

REM : si la subdivision o est réguliére, S(f 5 (c,)) = n

formule & savoir sans hésiter.
TH des sommes de Riemann : en raccourci, si f est continue sur [a, b], les sommes de Riemann ” convergent” vers U'intégrale
de la fonction f sur [a,b] lorsque le pas de la subdivision tend vers 0, ce qui signifie trés précisément que :

b
Ve >0 Ja>0 Vo,¥(cy) pas(o) <a= /ffS(fJ’(ck)) <e

a

Démonstration détaillée :
Donnée : f continue sur [a,b] , a < b, & valeurs réelles.

D’apres le théoréme de Heine, f est uniformément continue sur [a, b].
Soit € > 0 ; la continuité uniforme implique qu'il existe « > 0 tel que pour z,y dans [a, ],

€
b—a

lz—yl<a=|f(z)-fy)]<

Considérons une subdivision o = (g, ..., x,) de pas inférieur ou égal & « et une suite (¢;) associée ;

b n Tk
/ F =St 3 / (f @) — f (cx)) d
na Ty n Ti =l e
< 1f (@) = [ (ex)] do < Edr=——Y (&, —w5_1) =, CQFD
;/fl‘kl k ;/wklba b—a et

On en déduit, en prenant une subdivision réguliére et des xj égaux a la borne de droite de leur intervalle, le

Alors

b n
- ‘/ f@)de = f (cx) (wx — 2x-1)
a k=1

M=

=~
Il

1

COROLLAIRE : si f est continue sur [a, b], la suite (S,,) définie par

b_aZf(a—i—kb_a)
n n
k=1

Sn =

b
converge vers / I
D26 ‘

n
h—
REM : on en déduit que si f est CM sur [a,b] d’'intégrale non nulle, E f <a+k na) ~ n.Miap) (f), et en
k=1

particulier, pour a =0et b=1:

n 1
S7(2) o nMon (= [ £
0
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n n n n _ &
unzz ! —In2, UHZZ%NL, Wy, = Sln@~2—n, Ty = e—zwi.
=n+ k — (n+k) 2n = n T — k en
1X.7) CALCULS APPROCHES D’UNE INTEGRALE (hors programme).

Données : [a,b] — R continue, (g, z1, ..., Tn—1, T ) subdivision réguliere de [a, b],
/ P 1/

a) Méthode des rectangles (gauche ou droite).
T
On remplace / f par (zr — xk—1) f(ak—1) ou par (zr — xx—1)f(zk).

Tk—1
On obtient pour chacun des cas les formules approchées :

b—a"l b a b—a

Zf( ) et I, =

n

Les formules sont exactes pour f constante.

REM : I, — I, = “— (£ () - [ ()

PROP : Majoration de Uerreur, si f est C* sur [a,b] et M; = r[n%)]( [7']

)

(b—a)®
2

|\ — I, | <M (idem pour |I — I,,]).

De plus, cette inégalité est une égalité quand f est affine.

D33 : a laide de I'inégalité de Taylor-Lagrange, on montre d’abord que si f est C! sur [, (] :

Mmax|f|

B
Fla)de = (3 - o) f(0)| < 55 ma

<

puis on applique ceci aux cas @ = Tx_1,8 = Tk.
b) Méthode des rectangles centrés.

T

On remplace / f par (v —xp—1)f <%> ; on obtient la formule approchée
Tk—1
b—a 2 b—a
I.= 2k —1

La formule est exacte pour f affine.

PROP : Majoration de lerreur, si f est C! et M; = r[nalﬁ( [7'1
a,

(b—a)?

I__]}c g M
| | in

D35 : en utilisant 2 fois I'inégalité de Taylor-Lagrange, on montre que

atf
@f(—‘ﬁﬁ)‘ < |[ 7B ()

/ﬂé f<a;ﬁ)‘

(8 - a)? (B-ap (8 - a)?
< T s (7S max )< S
2] [#5

10
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puis on applique ceci aux cas @ = Tx_1,8 = Tk.

c) Méthode des trapézes.
.
On remplace / f par (x5 — xkil)w

Tk—1

; on obtient la formule approchée :

La formule est exacte pour f affine.

PROP : Majoration de lerreur, si f est C2? et My = r[nalﬁ( ¥

(b—a)?®

I— 1| < M-
| irl > 122

De plus, cette inégalité est une égalité quand f est du second degré.

B _ B
D34 : on montre d’abord que si f est C? sur [, f] ,/ f(z)dz = P 5 a(f(a) +f(8) —/ (x - aTJFB) f(z)dx
_ 8 ¢ ¢
— S0 @+ 13 - 5 [ - a)a - p) ),
(Ecrire d’abord dz = d (w _“ ; 6), puis (w — a;ﬁ) dx =d (%(JJ —a)(z - ﬁ)))
On en deduit que || 7~ 222 ((a) + 1(8))| < @I{n%{ 7
puis on applique ceci aux cas o = Tp_1, 8 = Tk. 7
REM : ceci montre que (I — I.,) ~ (I, — I) i ) 2:1f (@)

d) Méthode de Simpson.
Th—1 + Tk

lan) +47 (225 + fon)
On remplace / f par (z — x—1) 5

Tr—1

, ce qui donne la formule approchée :

L b6—na (f(a) L)+ izjf (a—l—kzb;a) +4Z¥if <a+ (2K + 1) bQ_na))

La formule est exacte pour f polynomiale de degré inférieur ou égal a trois.

1

g (h? +'2]}c)

PROP : Majoration de lerreur, si f est C* et My = max |F@]
a,

REM: | I, =

(b—a)

I—IL|<M
| | 479880n4

De plus, cette majoration est une égalité quand f est du quatrieme degré.

D36 : on montre d’abord que si f est C* sur [a, ],

11
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b B-a a+tp (B—a)
— 4 <2 (4)
‘/af = (f+47 (52) + 1)) | < Ll 9]
puis on applique ceci aux cas o = Tp_1, 8 = Tk.
/2
EXEMPLE : calcul de / sinzdz ; les 5 méthodes : rectangles a droite, rectangles & gauche, trapézes, rectangles
0

centrés, et Simpson donnent successivement, pour n = 10 :
1,076482803
0,9194031703
0,9979429867
1,001028824
1,000000212

IX.8 ) EXTENSION DES NOTIONS PRECEDENTES AUX FONCTIONS DE R vers C.
f désigne une fonction de R vers C, g et h ses parties réelle et imaginaire (g(z) = Re (f (2)),h(z) = Im (f (x))

a) Limites, continuité, équivalents, o, O.

Les définitions sont les mémes, a condition de lire les valeurs absolues comme des modules (par contre les définitions avec
des encadrements ne sont plus valables ; par exemple, f est continue en xg ssi

Ve >0 3a>0 Vz e Dy |[z—xo| <a=|f(z)— f(zo) <e
Il n’y a plus de notion de limite infinie (mais toujours des limites en +00) pour f, mais il y en a pour |f|, qui est une
fonction réelle ; par exemple, x — xe' n’a pas de limite en plus 'infini, mais

lim }xe”| = +o00
x—+00

PROP : il y a équivalence entre 'existence d’une limite [ pour f avec celle d'une limite {; pour g et d’une limite Iy pour
h, et 'on a |l = l; 4+ ils; on en déduit I’équivalence entre la continuité de f et celle, simultanée, de g et h.

Les propriétés concernant les opérations restent inchangées.
b) Dérivation.
Définitions identiques ; par exemple,

u—0 u

PROP : la dérivabilité de f équivaut a celle de ses parties réelle et imaginaire g et h ; et f/ =g +ih'.

Exemple :
d

d_eim — et — pi(e+%)
x

Les propriétés concernant les opérations restent inchangées ; mais par contre, le théoréme de Rolle ne s’étend pas aux
fonctions complexes.

¢) Intégration.

On ne peut plus définir I'intégrabilité & partir des fonctions en escalier minorantes et majorantes. La définition la plus
simple consiste & poser que 'intégrabilité de f équivaut a celle de ses parties réelle et imaginaire g et h ; et ’'on pose

b b b
[r-Jo ]

12
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Toutes les propriétés ne faisant pas intervenir d’encadrements restent valables.
IX. 9) COMPLEMENTS : méthodes de calculs de primitives (hors programme).
a) Primitives des fractions rationnelles réelles.

On décompose en éléments simples dans R :

les termes en s’'intégrent en
zF (k> 0) T
1 1
— (k>2) - o
(x — xo) ..... (SU - 1‘0)
In |z — xo|
SRTEY 5 b
ax—iz— _¢ (x—;—c) 2(10 —In (e )+ cocarctan (coeeeenee e )
(x+c)+e2 2(x4+c)+e2 (z4c) +e2
(k> 2) ar +b = L
2 2 2 o\
((a:—i—c) —i—e) <(x+c) +62>
a 2(x+c) b—ac . o dx
5 -+ ; T *, terme s’intégrant en utilisant I, (z) = / (Tl
((1’+C)2+62) ((x+c) +e2) T

REM 1 : ceci démontre que toute fraction rationnelle posséde une primitive ne faisant intervenir que In, arctan, et des
fractions rationnelles.

Mais il faut tempérer cet enthousiasme par le fait que, le théoréme de D’Alembert n’étant pas constructif, on ne sait

b
dx

pas factoriser des polyndémes de degré > 5 ; par exemple, le calcul de / Pl est subordonné & la factorisation de
LIt

X5+ X? + 1, laquelle est inconnue....
b) Primitives des fonctions rationnelles en sinus et cosinus.

DEF : une fonction de deux variables est dite rationnelle si lorsqu’on fixe une variable (et quelles que soient les fagons de
le faire), la fonction d’une variable obtenue est rationnelle.

Soit donc & déterminer / f (cosz,sinz) dx avec f rationnelle.

On dispose des régles dites de Bioche :
* Premier cas : si ’élément différentiel f (cosz,sinz)dx est invariant par le changement © — 7 — x, poser u = sin x.

Explication : on a f(—cosz,sinz) = —f (cosz,sinz), f est donc impaire par rapport & sa premiére variable et 1'on
pourra alors toujours écrire f (cosz,sinz) = cosz.g (C082 x, sin x) avec g rationnelle ; alors

/f(cosx,sinx)dx:/g(cos?:c,sinx) cosx d:c:/g(lfuz,u)du

et on tombe sur une fraction rationnelle en u, qui s’intégre.
* Deuxieme cas : si I'élément différentiel f (cosx,sinx)dz est invariant par le changement x — —x, poser u = cos .

Explication : on a f(cosz,—sinx) = —f (cosz,sinz), f est donc impaire par rapport & sa deuxiéme variable et 1'on
pourra alors toujours écrire f (cosz,sinz) = sinz.g (cos T, sin x) avec g rationnelle ; alors

/f(cosx,sinx)dx:/g(cosx,sinzx) sin d:c:f/g(u,lfzﬂ) du

13
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et on tombe sur une fraction rationnelle en u, qui s’intégre.

* Troisiéme cas : si 'élément différentiel f (cosz,sinx)dz est invariant par le changement x — x + 7, poser u = tan z.
Explication: ona f (—cosz, —sinx) = f (cos z,sin x) ,et 'on démontre que I'on pourra alors toujours écrire f (cos z, sinz) =
g (tanz) avec g rationnelle ; alors

/f(cosx,sinx) dr = /g(tanx) do — / 1g+(u32 du

et on tombe sur une fraction rationnelle en u, qui s’intégre.

ATTENTION : la primitive obtenue ne sera valable que sur ] —g + km, g + kﬂ[ ; sl g est dans l'intervalle d’intégration,

on peut aussi poser u = cot z, qui fonctionne de maniére similaire.
* si aucun des cas précédent n’a fonctionné, poser v = tan 5 changement fonctionnant dans tous les cas.

_ 1—u?  2u 2du
/f(cosx,smx)dx/f<1+u271+u2> 1+ u2

et on tombe sur une fraction rationnelle en u, qui s’intégre.

Explication :

ATTENTION : la primitive obtenue ne sera valable que sur |—m + 2k, w + 2k7| ; si 7 est dans U'intervalle d’intégration,

on peut aussi poser u = cot 5 qui fonctionne de maniére similaire.

¢) Primitives des fonctions rationnelles en ’exponentielle.

Soit a déterminer / f(e*)dx avec f rationnelle : poser u = e*.

[rerin= [1w%

et on tombe sur une fraction rationnelle en u, qui s’intégre.

Explication :

REM : ce cas englobe celui des fonctions rationnelles en cosinus hyperbolique et en sinus hyperbolique.

o . . ar+b
d) Primitives des fonctions rationnelles en = et en { npt
x
b / b
Soit & déterminer / flzx, ¢ ar + dx avec f rationnelle : poser u = ¢ ar + .
cr+d cr+d
b b—du™
Explication : u" = ar + , donc x = - g (u) avec g rationnelle, et donc
cr+d cu™ —a

/f<x, \"/%) do= [ (gw) ) g (u)du

et on tombe sur une fraction rationnelle en u, qui s’intégre.

e) Primitives des fonctions rationnelles en x et en vaz? + bz + c.

Soit a déterminer / f (x, Vaz? 4+ bx + c) dx avec f rationnelle, et A = b —4ac # 0 (pourquoi le cas A = 0 est-il évident
?)

1 2ax +b
Premiére étape : mettre ax? + bz + ¢ sous sa forme canonique Ta ((an + b)2 — A) et poser u = \/& ;il y a alors 3
a

cas

14
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Premier cas: A > 0eta > 0: on obtient /f (:U, Vax? + bz +¢) do = /g (u, Vu? — 1) du : poser alors v = argcheu (e =

+1), d’ott u = ech v et du = € sh vdv, soit

/g(u, \/u2—1> du:/g(sch v,sh v) esh vdv

et on, est ramené au IIT)

Deuxiéme cas : A > 0 et a <0 : on obtient /f (w, Var? + bx + c) der = /g (u, V1-— uz) du : poser alors v = arcsin u,

d’olt u = sinw et du = cosv dv, soit

/g (u, V1-— u2) du = /g (sinw, cos v) cos vdv

et on, est ramené au II)

Troisiéme cas : A < 0eta > 0: on obtient /f (z,Vax? + bz + ¢) do = /g (u, V1 + u?) du : poser alors v = argsinhu,

d’ott u =sh v et du =ch v dwv, soit
/g (u, \/1+u2) du = /g(sh v, ch v) ch vdv

et on, est ramené au 1)
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